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Previous Technical Reports to the Office of Naval Research

Ee A. J. Durelli, "Development of Experimental Stress Analysis Methods to
Netermine Stresses and Strains in Solid Propellant Grains'--June 1962.

Developments in the manufacturing of grain-propellant models are

reported. Two methods are given: a) cementing routed layers and

b) casting.

2% A. J. Durelli and V. J. Parks, '"New Method to Determine Restrained
Shrinkage Stresses in Propellant Grain Mcdels'"--October 1962.
The birefringence exhibited in the curing process of a partially
restrained polyurethane rubber is used to determine the stress associated
with restrained shrinkage in models of solid propellant grains partially

bonded to the case.

B A. J. Durelli, "Recent Advances in the Application of Photoelasticity in

the Missile Industry'--October 1962.

Two- and three-dimensional photoelastic analysis of grains loaded by
pressure and by temperature are presented. Scme applications to the
optimization of fillet contours and to the redesign of case joints are

also included.

A. J. Durelli and V. J. Parks, "Experimental Solution of Some Mixed

Boundary Value Problems'--April 1964.
Means of applying known displacements and known stresses to the boundaries

of models used in experimental stress analysis are given. The applica-
tion of some of these methods to the analysis of stresses in the field
of solid propellant grains is illustrated. The presence of the "pinching

effect" is discussed.

S A. J. Durelli, "Brief Review of the State of the Art and Expected Advance
in Experimental Stress and Strain Analysis of Solid Propellant Grains'"--

April 1964.
A brief review is made of the state of the experimental stress and strain

analysis of solid propellant grains. A discussion of the prospects for
the next fifteen years is added.

6 A. J. Durelli, "Experimental Strain and Stress Analysis of Solid Propellant

Rocket Motors'"--March 1965.
A review is made of the experimental methods used to strain-analyze solid

propellant rocket motor shells and grains when subjected to different
loading conditions. Methods directed at the determination of strains in

actual rockets are included.

L. Ferrer, V. J. Parks and A. J. Durelli, "An Experimental Method to Analyze
Gravitational Stresses in Two-Dimensional Problems'--October 1965.
Photoelasticity and moiré methods are used to solve two-dimensional problems

in which gravity-stresses are present.
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8. A. J. Durelli, ¥. !. Parks and C. J. del Rio, "Stresses in a Square Slab
Bonded on One ace :o a Rigid Plate and Shrunk'"--November 1965.
A square epoxy slab was bonded to a rigid plate on one of its faces in 3
the process of curing. In the same process the photoelastic effects
associated with a state of restrained shrinkage were '"frozen-in."
Three-dimensional photoelasticitvy was used in the analysis.

V. J. Parks and C. J. del Rio, "Experimental Determination

9. A. J. Durelli, V.
of Stresses and Uisplacements in Thick-Wall Cylinders of Complicated

Shape"--April 19b6f,
Photoelasticity and moiré are used to analvze a three-dimensional rocket
shape with a star shaped core subjected to internal pressure.

EO- V. J. Parks, A. J. Durelli and L. Ferrer, "Gravitational Stresses

Determined Using Immersion Techniques'"--July 1966.
The methods presented in Technical Report No. 7 above are extended to

+hree-dimensions. Immersion is used to increase response.

11. A. J. Durelli and V. J. Parks. "Experimental Stress Analysis of Loaded
3oundaries in Two-Dimensional Second Boundary Value Problems'--

February 1967.

The pinching effect that occurs in two-dimensional bonding problems,

noted in Reports 2 and 4 above, is analyzed in some detail.

12. A. J. Durelli, V. J. Parks, H. C. Feng and F. Chiang, "Strains and
Stresses in Matrices with Inserts,"-- May 1967.
Stresses and strains along the interfaces, and near the fiber ends, for
different fiber end configurations, are studied in detail.

13 A. J. Durelli, V. J. Parks and S. Uribe, "Optimization of a Slot End

Configuration in a Finite Plate Subjected to Uniformly Distributed

Load,"--June 19c7.
Two-dimensional photoelasticity was used to study various elliptical ends

to a slot, and determine which would give the lowest stress concentration
for a load normal to the slot length.

14, A. J. Durelli, V. J. Parks and Han-Chow Lee, "Stresses in a Split
Cylinder Bonded to 1 Case and Subjected to Restrained Shrinkage,'"--
January 1968.

A three-dimensional photoelastic study that describes a method and
shows results for the stresses on the free boundaries and at the

bonded interface of a solid propellant rocket.

1S4 A. J. Durelli, "Experimental Stress Analysis Activities in Selected
European laboratories'--August 1968.
This report has been written following a trip conducted by the author
through several European countries. A list is given of many of the
laboratories doing important experimental stress analysis work and of
the people interested in this kind of work. An attempt has been made
+o0 abstract the main characteristics of the methods used in some of

the countries visited.




! "Constant Acceleration Stresses

1lo. V. J. Parks, A. J. Durelli and L. Ferrer,

in a Composite Body'"--Cctober 1968.
Use of the immersion analogy to determine gravitational stresses in

two-dimensional bodies made of materials with different properties.

12, A. J. Durelli, J. A. Clark and A. Kochev, "Experimental Analysis of High

Frequency Stress Waves in a Ring' '--October 1968.
A method for the vomplete experimental determination of dynamlc stress

distributions in a ring is demonstrated. Photoelastic data is supple-
mented by measurements with a capacitance gage used as a dynamic lateral

extensometer.

J. A. Clark and A. J. Durelli, "A Modified Method of Holographic Inter-
ferometry for Static and Dynamic Photoelasticity'"--April 1968.

A simplified absolute retardation approach to photoelastic aralysis is
described. Dynamic isopachics are presented.

18.

J. A. Clark and A. J. Durelli, "Photoelastic Analysis of Flexural Waves
in a Bar"--May 1969.

A complete direct, full-field optical determination of dynamic stress
distribution is illustrated. The method is applied to the study of
flexural waves propagating in a urethane rubber bar. Results are
compared with approximate theories of flexural waves.

J. A. Clark and A. J. Durelli, "Optical Analysis of Vibrations in
Continuous Media'"--June 1969.

Optical methods of vibration analysis are described which are independent
of assumptions associated with theories of wave propagation. Methods are
illustrated with studies of transverse waves in prestressed bars, snap
loading of bars and motion of a fluid surrounding a vibrating bar.

V. J. Parks, A. J. Durelli, K. Chandrashekhara and T. L. Chen, "Stress
Distribution Around a Circular Bar, with Flat and Spherical Ends,

Embedded in a Matrix in a Triaxial Stress Field"--July 1969.

A Three-dimensional photoelastic method to determine stresses in composite
materials is applied to this basic shape. The analyses of models with
different loads are combined to obtain stresses for the triaxial cases.

A. J. Durelli, V. J. Parks and L. Ferrer, "Stresses in Solid and Hollcw
Spheres Subjected to Gravity or to Normal Surface Tractions'"--

October 1969.
The method described in Report No. 10 above is applied to two specific g

problems. An approach is suggested to extend the solutions to a class
of surrace traction problems.
|

. A. Clark and A. J. Durelli, "Separation of Additive and Subtractive | 4

Moiré Patterns'--December 1969 |
A spatial filtering technique for adding and subtracting images of several |

gratings is described and employed to determire the whole field of
Cartesian shears and rigid rotations.

iv

=




&

rD
~3

29.

2. . Sanford and A. J. Durelli, "Interpretaticn of Fringes in Stress-
iolo-Interfarometry"--Tuly 1379,

Errors associated with interpreting
1s the superrosition of isopachics (wi
isochromatics are analvzed theoretically
interference patterns.

stress-holo-interferometry patterns
th nalf order fringe shifts) and
and illustrated with computer

{0

renerzted hologravhic

' A. Clark, A. J. Durelli and P. A. Laura, "On the Effect of Initial

ctress on the Propacation of Flexural Waves in Elastic Rectangular L

dars'"--December 1370,
E the rrowafdtion of flexural waves in prismatic

Experimental analysis of £
elactic bars with and without prégtr@)..ng. The effects of prestressing

by axial tension, axial compression and pure bending are illustrated.

A. J. Durelli and J. A. Clark, "Experimental Analysis of Stresses in a
Buov-"ible Svstem Using a Birefringent Fluid"--February 1971.

An extension of the method of photoviscous analvsis is presented which
permits aquantitative studies of strains associated with steady state
vibrations of immersed structures. The method is applied in an
investication of one forn of behavior of buov-cable svstems loaded by

the action of surface waves.

A. J. Durelli and T. L. Chen, "Displacements and Finite-Strain Fields in
a Sphere Subjected to Large Deforwa*:‘ns"--rﬂ“rtar" 1972,

Displacements and ctrains (ranging from 0.001 to 0. 50) are determined in

a polyurethane sphere subjected to dovoral levels of diametral compression.
A 500 llnnv—pnr inch grating was embedded in a meridian plane of the

sphere and moiré effact produced with a non-deformed master. The maximum

applied vertical displacement reduced the diameter of the sprhere by 27

per cant.
A. J. Durelli and S. Machida, ":itresses and Strain in a Disk with Variable

Modulus of Elasticity"--March 1972
A transparent material with variable modulus of elasticity has been

manufactured that exhibits good photoelastic properties and can also be
strain analyzed by moiré. The results obtained suggests that the stress
distribution in the disk of variable I is practically the same as the
stress distribution in the homogeneous disk. It also indicates that the
strain fields in both cases are very ditferent, but that it is possible,
approximately, to obtain the stress field from the strain field using the
value of E at every point, and Hooke's law.

A. J. Durelli and 1. Buitrapo, "State of Stress and Strain in a Rectangular

Belt Pulled Over a Cyvlindrical Pulley'--June 1972.

Two- and three-dimensional photoelasticitv as well as electrical strain
pages, dial papes and micrometers are used to determine the stress distri-
bution in a belt-pulley svstem. Contact and tangential stress for various

contact angles and friction coefficients are given.




30.

3d.

32.

33.

4.

35.

36.

T. L. Chen and A. J. Durelli, “Stress Field in a Sphere Subjected to
Large Deformation3"--June 1372, 3
Strain fields obtained in a sphere subjected to large diametral compressions

from a previous paper were converted into stress fields using two approaches.

First, the concept of strain-energy function for an isotropic elastic

Then the stress field was determined with the Hookean

body was used.
The results so obtained

type natural stress-natural strain relation.
were also compared.

A. J. Durelli. V. J. Parks and H. M. Hasseem, "Helices Under Load"--

July 1973.

Previous solutions for the case of close coiled helical springs and for
helices made of thin bars are extended. The complete solution is
presented in graphs for the use of designers. The theoretical development

is correlated with experiments.

T. L. Chen and A. J. Durelli, "Displacements and Finite Strain Fields in

a Hollow Sphere Subjected to Large Elastic Deformations'--September 1973.

The same methods described in No. 27, were applied to a hollow sphere
The hollow sphere

with an inner diameter one half the outer diameter.
was loaded up to a strain of 30 per cent on the meridian plane and a

reduction of the diameter by 20 per cent.

A. J. Durelli, H. H. Hasseem and V. J. Parks, '"New Experimental Method .
in Three-Dimensional Elastostatics'"--December 1973. 4
A new material is reported which is unique among three-dimensional
stress-freezing materials, in that, in its heated (or rubbery) state g
it has a Poisson's ratio which is appreciably lower than 0.5. For a i
loaded model, made of this material, the unique property allows the |
direct determination of stresses from strain measurements taken at E
!

interior points in the model.

J. Wolak and V. J. Parks, "Evaluation of large Strains in Industrial ;
Applications'"--April 1974. i
It was shown that Mohr's circle permits the transformation of strain from
one axis of reference to another, irrespective of the magnitude of the
strain, and leads to the evaluation of the principal strain components
from the measurement of direct strain in three directions.

A. J. Durelli, "Experimental Stress Analysis Activities in Selected

European Laboratories'--April 1975.
Continuation of Report No. 15 after a visit to Belgium, Holland, Germany, !

France, Turkey, England and Scotland.

A. J. Durelli, V. J. Parks and J. 0. Bihler-Vidal, "Linear and Noa-linear
Tlastic and Plastic Strains in a Plate with a Big Hole Loaded Axially in
its Plane"--July 1975.

Strain analysis of the ligament of a plate with a big hole indicates that
both geometric and material non-linearity may take place. The streain
concentration factor was found to vary from 1 to 2 depending on the level

of deformation.
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A.
of a Cupic Box Subje

J. Durelli, V. Pavlin, 0. Biihler-vidal and G. Cme, '"Elastostatics
tscted to Concentrated Loads'--August 1975.

.

Analysis of experimental strain, stress and deflection of a cubic box
subjected to concentrated loads applied at the center of two opposite

faces.

The ratio between the inside span and the wall thickness was

varied between approximately S and 121.

A.
~ubic Boxes Subjected to Pressure'--March 1906,
Experimental analysis of strain,
subjected to either internal or external pressure.

J. Durelli, V. J. Parks and J. 0. Biihler-Vidal, "Elastostatics of

stress and deflecticns in a cubic box
Inside span-to-wall

thickness ratio varied from 5 to 1lu.

¥

Determine Vibration-Induced Strains with Variable Sensitivity After
Recording' --November 1976.

A steady state vibrating obj
its image slightly misfocused.
integrated" as when Fourier filtere

Y. Hung, J. D. Hovanesian and A. J. Durelli, '"New Optical Method to

oct is illuminated with coherent light and
The resulting specklegram is "time-
d gives derivatives of the vibrational

amplitude.

v

Stress Studies by Time-Averaged Photoelasticity'"--November 13876.
"Time-
exposed for more than one period.

oscillating

¥e
Averaged Shadow Moiré Method for Stu

Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "Cyclic

averaged isochromatics' are formed when the photographic film is
Fringes represent amplitudes of the
stress according to the zeroth order Bessel function.

Y. Liang, J. D. Hovanesian and A. J. Durelli, "Time-

Y. Hung, C.
dying Vibrations'--November 1976.

Time-averaged shadow moir€ permits the determination of the amplitude
distribution of the deflection of a steady vibrating plate.

J.
Fringes'--April 1977.
Possible rotations
general expression
sensitivity of the metnod.

J. der Hovanesian,
Eurovean Scientific
England, Dec. 31, 1976.

Comments on the planning
paper prasented at the 18th Polish Solid Mec

Buitrago and A. J. Durelli, "On the Interpretation of Shadow-Moiré
and translaticns of the grating are considered in a

to interpret shadow-moiré fringes and on the
Application to an inverted perforated tube.

"18th Polish Solid Mechanics Conference." Published in
Notes of the Office or Naval Research, in London,

and organization of, and scientific content of
hanics Conference held in

Wisla-Jawornik from September 7-14, 1976.

A. J. Durelli, "The Difficult Choice,"--May 1977.
The advantages and limitations of methods available for the analyses

of displacements, strain, and stresses are considered.
made on several theoretical approaches, in particular approximate
methods, and attention is concentrated on experimental methods:

elasticity, moiré,
holography and speckle to solve two-

Comments are

photo-

brittle and photoelastic coatings, gages, grids,
and three-dimensional problems in

elasticity, plasticity, dynamics and anisotropy.
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C. Y. Liang, Y. Y. Hung, A. J. Durelli and J. D. Hovanesian,
"Direct Determination of Flexural Strains in Plates Using Projected

Gratings,''--June 1977.
The method requires the rotation of one photograph of the deformed

grating over a copy of itself. The moiré produced yields strains by
optical double differentiation of deflections. Applied to projected
gratings the idea permits the study of plates subjected to much larger
deflections than the ones that can be studied with holograms.

A. J. Durelli, K. Brown and P. Yee, "Optimization of Geometric
Discontinuities in Stress Fields''--March 1978.

The concept of "coefficient of efficiency" is introduced to evaluate
the degree of optimization. An ideal design of the inside boundary of
a tube subjected to diametral compression is developed which decreases
its maximum stress by 25%, at the time it also decreases its weight by
10%. The efficiency coefficient is increased from 0.59 to 0.95.
Tests with a brittle material show an increase in strength of 20%. An
ideal design of the boundary of the hole in a plate subjected to axial
load reduces the maximum stresses by 26% and increases the coefficient

of efficiency from 0.54 to 0.90.

J. D. Hovanesian, Y. Y. Hung and A. J. Durelli, "New Optical Method

to Determine Vibration-Induced Strains With Variable Sensitivity After
Recording''--May 1978.

A steady-state vibrating object is illuminated with coherent light and
its image is slightly misfocused in the film plane of a camera. The
resulting processed film is called a "time-integrated specklegram."

When the specklegram is Fourier filtered, it exhibits fringes depicting
derivatives of the vibrational amplitude. The direction of the spatial
derivative, as well as the fringe sensitivity may be easily and continu-
ously varied during the Fourier filtering process. This new method is
also much less demanding than holographic interferometry with respect to
vibration isolation, optical set-up time, illuminating source coherence,

required film resolution. etc.

Y. Y. Hung and A. J. Durelli, "Cimultaneous Determination of Three
Strain Components in Speckle Interferometry Using a Multiple Image
Shearing Camera,''--September 1978

This paper describes a multiple image-shearing camera.
coherent light illumination, the camera serves as a multiple shearing
speckle interferometer which measures the derivatives of surface
displacements with respect to three directions simultaneously. The
application of the camera to the study of flexural strains in bent
plates is shown, and the determination of the complete state of two-
dimensional strains is also considered. The multiple image-shearing
camera uses an interference phenomena, but is less demanding than
holographic interferometry with respect to vibration isolation and the
coherence of the light source. It is superior to other speckle
techniques in that the obtained fringes are of much better quality.

Incorporating

viii




49.

This paper deals with the optimization of the shape of the corners
and sides of a square hole, located in a large plate and subjected

to in-plane loads. Appreciable disagreement has been found between
the results obtained previously by other investigators. Using an
optimization technique, the authors have developed a quasi square
shape which introduces a stress concentration of only 2.54 in a
uniaxial field, the comparable value for the circular hole being

3. The efficiency factor of the proposed optimum shape is 0.90
whereas the one of the best shape developed previously was 0.71.
The shape also is developed that minimizes the stress concentration

in the case of biaxial loading when the ratio of biaxiality is 1:-1.




OPTIMUM HOLE SHAPES IN FINITE PLATES UNDER UNIAXTAL LOAD

by

A. J. Durelli and K. Rajaiah

Abstract

This paper presents optimized hole shapes in plates of finite width
subjected to uniaxial load for a large range of hole to plate widths
(D/W) ratios. The stress concentration factor for the optimized holes
decreased by as much as 447 when compared to circular holes. Simulta-
neously, the area covered by the optimized hole increased by as much as
26% compared to the circular hole. Coefficients of efficiency between
0.91 and 0.96 are achieved. The geometries of the optimized holes for

the D/W ratios considered are presented in a form suitable for use by

designers. It is also suggested that the developed geometries may be

applicable to cases of rectangular holes and to the tip of a crack.

This information may be of interest in fracture mechanics.




Introduction -

Optimization of hole shapes in stress fields is an important problem in
engineering design. Surprisingly, the problem has attracted verv limited
attention. Heywood(l) was one of the first investigators to attempt the
optimization of hole shapes and, based on general considerations, he
predicted that a barrel-shaped hole with the bulging sides having a radius
of curvature equal to the hole width D would be an optimum shape for an

infinite plate under uniaxial tension. Ross(z)

conducted photoelastic
experiments on Heywood's "ideal shape'" lole and estimated the stress

concentration factor (s.c.f.) to be 3.25.

(3) (4)

Durelli, Dally and Riley , and more recently, Durelli, Brown and Yee
presented a practical way of arriving at optimum hole shapes from simple
photoelastic tests by removal of material from low stress regions around
the hole and making an isochromatic fringe coincide with the boundary.
Following this approach, Durelli and Rajaiah(S) arrived at a quasi-square
hole with a s.c.f. value of only 2.54 as optimum shape for a wide plate
under uniaxial loadjand a double-barrel hole with a s.c.f. value of

only 3.6 as optimum shape for a wide plate under pure shear, the corresponding
values for the circular hole being 3 and 4 respectively. In the present

paper, work on the optimization of hole shapes in finite plates subjected

to uniaxial load is presented.

Constraints of the Problem

For the optimization process, the following constraints were stipulated:

a) the boundary of the hole has to lie inbetween the circle of
diameter D and the square of side D. and

b) the allowable maximum stress for compression is about three

times the allowable maximum stress for tension.




Method

As already mentioned, the optimization process involves removal of
material from low stress regions around the hole by careful hand filing
till an isochromatic fringe coincides with the boundary in the tensile and
compressive regions respectively. The constraints of the problem dictate
the amount of material that may be removed.

It was proposed in an earlier paper(4) that the degree of optimization
be evaluated quantitatively by a coefficient of efficiency

([slotds fszo;ds
1 0

S

c 1
kefr = S5 3 S

i Tase %agq

where 9 represents the maximum allowable stress (the positive and

e
negative superscripts referring to tensile and compressive stresses,
respectively), S0 and S1 are the limiting points of the segment of boundary
subjected to tensile stresses and S1 and 82 are the limiting points of the
segment of boundary with compressive stresses.

The coefficient of efficiency keff shows how efficiently the material
at the hole boundary has been utilized for the given field. keff equal to
one would mean that the stress levels are constant both on the tensile and
compressive regions around the hole. The closer keff is to unity, the more
efficient the design is. In other words, a hole with a keff of 0.95 has
a higher degree of optimization than a hole with a keff = 0.90. Further,
as one moves from a keff value of about say 0.80 to say 0.95, the s.c.f.
comes down in both the tensile and compressive regions.

The same criterion has been used in the present work to evaluate the

optimized hole shapes.

r




Experimental Details

Experiments were conducted with 0.23 in (5.8mm) thick Homalite-100
plates (fringe constant of 133.2 1b/in-fr (23.3 kN/m-fr)). The hole width
was chosen as 1.5 in (38.1 mm) for the smaller D/W ratios while it was
maintained at 3.0 in (76.2 mm) for the larger D/W ratios. Optimization
was carried out for D/W = 0.140, 0.377, 0.518, 0.775 and 0.837, with the
models subjected to uniaxial tension. For small ratios, the absolute
size of the hole had to be kept small for practical considerations of the
loading frame, while for large ratios, larger hole sizes could be chosen.
Invariably, the use of larger hole sizes increases the ease with which
optimization can be carried out especially at the corners, and improves
the precision of the determinations. To improve the precision further,
in particular at the corner zones, a binocular magnifier with 2 set of
polarizer and quarter wave plates attached to each of its lenses was used

during the filing process.

Results

The isochromatic patterns for two typical hole shapes are shown in
Figs. 1 and 2. The stress distributions around the optimized holes for
the D/W ratios considered are presented in Fig. 3. The same figure also
includes the stress distribution around circular holes in several plates
of finite width. The s.c.f. for the tensile and compressive regions of
the optimized holes for different D/W ratios are plotted in Fig. 4.
Information for circular holes(6) is also included in this figure.

The empirically developed optimum hole geometries have been fitted
with a combination of circles of different diameters and common tangents

at the points of intersection. The hole geometries for the differemt D/W

S i s,
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ratios are shown in Figs. 5 to 9.

The information given in Figs. 5 to 9 have been consolidated in
Fig. 10 and the different radii of curvature for the hole edges for the
range of D/W ratios considered are presented in graphical form. This

information should be useful to desipgners.

Optimization of Rectangular Holes

It mav be recalled that the optimum shapes have heen developed with
one of the constraints stating that the hole should lie inbetween a square
of side D and a circle of diameter D. The hole shapes developed suggest
that, for D/W ratios larger than about 0.6, since the longitudinal sides
remain straight and so do the fringes, the same shapes developed for the
quasi-square hole can be expected to remain optimum for rectangular holes
(sides a x b) with a/b ratios larger than about 0.4 (Fig. 1la). Similarly
for a/W ratios smaller than about 0.4, the quasi-square shape could be

used when the sides of the rectangle are larger than about 0.9 (Fig. 11b).

Optimum Shape of a Tip of a Crack

Rice(g) in his analysis of the strain concentration at smooth-ended
notch tips, raises the question of the optimum shape of the tip of a
crack. Following the reasoning in the previous paragraph, it is also
believed that the geometry outlined in Fig. (11b), for small aky, may
on first approximization give the desired optimum shape at the tip of

the crack.

Economy of Weight

The optimum shapes developed here have lead to significant reduction
in weight as compared to the circular holes. The percentage increase in

the area of the optimized hole as compared to the circular hole has been




plotted in Fig. 4 for the different optimum shapes. The increase is

about 16% for D/W = 0.14 while it goes up to about 267 for D/W = 0.64.
For D/W larger than 0.64, there is a reduction in the gain, the value
reaching 18% for D/W = 0.837. It is anticipated that this trend of
reduced gain will continue till D/W — 1, since the transverse edge will

tend to be a near circular edge.

Discussion
The isochromatic patterns in Figs. 1 and 2 and the stress distributions

given in Fig. 3 show that the newly developed hole shapes are optimum with

the stresses remaining uniform along large portions of the tensile as well

as compressive segments of the edge. It is also seen from Figs. 3 and 4

that, as compared to the circular holos(6), the optimum shapes have resulted
in significant reduction of s.c.f., the reduction ranging from 167 for

D/W = 0.14 to about 44%Z for D/W = 0.837. Fig. 4 also includes information
given in an eariier papor(A) for D/W = 0.6. It is seen that the present datum
is a further refinement over the carlier value wherein keff = 0.90. The
coefficient of efficiency keff has been achieved in the range 0.91 to 0.96,
the lower values being for lower D/W ratios, as shown in Fig. 4.

It is known(b)'(7) that, for the circular hole, the limiting value of
s.c.f. as D/W—1 is about 2.0. 1In the present case of optimized holes,
this limit would appear to be about 1.0, as seen from Fip. 4.

It is important to studv the shape of the optimized holes in Figs. 5
to 9 as the D/W ratio increases. For D/W ratios smaller than about 0.56,
the holes are barrel-shaped with the longitudinal edges curved and the
transverse edges remaining straight. As the D/W ratio increases towards
0.56, the radius of curvature of the bulging sides also increases. In the

range 0.56 < D/W < 0.70, both the longitudinal and the transverse sides

i iniet o it e,
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remain straight with curved corners. This would mean that, in this range
of D/W, a square hole with rounded corners itself is an optimum shape with
the proper choice of corner radius. The information in Fig. 10 confirms
this.

As the hole size increases further (D/W > 0.70), interesting things
Vhile the longitudinal edges continue to remain straight,

tend to develop.

the transverse edges start bulging out. The corners need special attention

with inflection points appearing along the transverse edges. It would

appear that as D/W ratio approaches unitv, the transverse edge would
tend to become a circular edge with a radius of D/2. Some experimental
results of Flynn<7) on circular holes confirm this anticipation.

Another point of interest in Figs. 5-~9 is the corner of the hole.
It is weil accepted that in structural discontinuities anyv reentrant
corner with a verv small radius is a potential source of stress concen-
tration and is to be avoided. However, in the present case of optimized
holes, the corner regions happen to be low stress areas with zero stress
occuring at the corner. Hence, ideallv one can have a very sharp reen-

trant corner without introducing a stress concentration. In other words,

the ideal optimized hole with koff = 1 appears to need a sharp corner!

Conclusion

Optimized hole shapes in finite plates subjected to uniaxial load have
been presented for a range of D/W ratios. It has been shown that, as
compared to circular holes, the optimized holes lead to significant reduction
in s.c.f. together with significant increase in the area covered by the hole.
Thus a substantial increase in strength/weight ratio is achieved. The geome-
tries of the optimized holes are presented in a form suitable for use by

designers. It is also suggested that the developed geometries may be applicable

to cases of rectangular holes.
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FIG. 1

OPTIMUM SHAPE OF A HOLE IN A FINITE PLATE SUBJECTED TO

AXIAL LOADING (D/W = 0.837)
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FIG, 2

OPTIMUM SHAPE OF A HOLE IN A PLATE SUBJECTED TO AXIAL LOADING
(D/W = 0.,377)
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FIG, 4 STRESS CONCENTRATION FACTORS FOR OPTIMIZED HOLES IN
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OPTIMIZED GEOMETRY OF A QUASI-SQUARE HOLE ASSOCIATED WITH
THE MINIMUM STRESS CONCENTRATION FACTOR IN A LARGE PLATE
SUBJECTED TO UNIAXIAL LOADING

FIG. 5
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FIG, 6 OPTIMIZED GEOMETRY OF A QUASI-SQUARE HOLE IN FINITE
PLATE (D/W = 0,377) SUBJECTED TO IN-PLANE AXIAL

LOADING
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